Friday, 7 July 2017

30 Tage Gleit Durchschnitt Formel


Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte auf die tatsächlichen Datenpunkte. JX enthält einige statistische Aggregationsfunktionen wie Mittelwert, Varianz und Standardabweichung. Andere typische statistische Berechnungen verlangen, dass Sie längere DAX-Ausdrücke schreiben. Excel hat aus dieser Sicht eine viel reichere Sprache. Die statistischen Muster sind eine Sammlung von gemeinsamen statistischen Berechnungen: Median, Modus, gleitender Durchschnitt, Perzentil und Quartil. Wir danken Colin Banfield, Gerard Brückl und Javier Guilln, dessen Blogs einige der folgenden Muster inspirierten. Grundmuster Beispiel Die Formeln in diesem Muster sind die Lösungen für spezifische statistische Berechnungen. Sie können Standard-DAX-Funktionen verwenden, um den Mittelwert (arithmetischen Mittelwert) eines Satzes von Werten zu berechnen. DURCHSCHNITT Gibt den Durchschnitt aller Zahlen in einer numerischen Spalte zurück. AVERAGEA Gibt den Durchschnitt aller Zahlen in einer Spalte zurück und behandelt sowohl Text als auch nicht-numerische Werte (nicht numerische und leere Textwerte zählen als 0). AVERAGEX Berechnen Sie den Durchschnitt auf einem Ausdruck, der über einer Tabelle ausgewertet wird. Moving Average Der gleitende Durchschnitt ist eine Berechnung, um Datenpunkte zu analysieren, indem eine Reihe von Mittelwerten verschiedener Teilmengen des vollständigen Datensatzes erstellt wird. Sie können viele DAX-Techniken verwenden, um diese Berechnung umzusetzen. Die einfachste Technik ist die Verwendung von AVERAGEX, die eine Tabelle der gewünschten Granularität iteriert und für jede Iteration den Ausdruck berechnet, der den einzelnen Datenpunkt erzeugt, der im Durchschnitt verwendet wird. Beispielsweise berechnet die folgende Formel den gleitenden Durchschnitt der letzten 7 Tage, vorausgesetzt, dass Sie eine Datumstabelle in Ihrem Datenmodell verwenden. Mit AVERAGEX berechnen Sie automatisch die Maßnahme auf jeder Granularitätsebene. Bei der Verwendung einer Maßnahme, die aggregiert werden kann (wie zB SUM), dann könnte ein anderer Ansatz, der auf CALCULATE basiert, schneller sein. Sie finden diesen alternativen Ansatz in der vollständigen Muster von Moving Average. Sie können Standard-DAX-Funktionen verwenden, um die Varianz eines Satzes von Werten zu berechnen. VAR. S. Gibt die Varianz der Werte in einer Spalte zurück, die eine Stichprobenpopulation repräsentiert. VAR. P. Gibt die Varianz der Werte in einer Spalte zurück, die die gesamte Population repräsentiert. VARX. S. Gibt die Varianz eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die eine Stichprobenpopulation repräsentiert. VARX. P. Gibt die Varianz eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die die gesamte Population repräsentiert. Standardabweichung Sie können Standard-DAX-Funktionen verwenden, um die Standardabweichung eines Satzes von Werten zu berechnen. STDEV. S. Gibt die Standardabweichung von Werten in einer Spalte zurück, die eine Stichprobenpopulation repräsentiert. STDEV. P. Gibt die Standardabweichung von Werten in einer Spalte zurück, die die gesamte Population repräsentiert. STDEVX. S. Gibt die Standardabweichung eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die eine Stichprobenpopulation repräsentiert. STDEVX. P. Gibt die Standardabweichung eines Ausdrucks zurück, der über eine Tabelle ausgewertet wird, die die gesamte Population repräsentiert. Der Median ist der Zahlenwert, der die höhere Hälfte einer Population von der unteren Hälfte trennt. Wenn es eine ungerade Anzahl von Zeilen gibt, ist der Median der Mittelwert (Sortierung der Zeilen vom niedrigsten Wert zum höchsten Wert). Wenn es eine gerade Anzahl von Zeilen gibt, ist es der Durchschnitt der beiden Mittelwerte. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Das Ergebnis ist identisch mit der MEDIAN-Funktion in Excel. Abbildung 1 zeigt einen Vergleich zwischen dem von Excel zurückgegebenen Ergebnis und der entsprechenden DAX-Formel für die Medianberechnung. Abbildung 1 Beispiel für die mediane Berechnung in Excel und DAX. Der Modus ist der Wert, der am häufigsten in einem Satz von Daten erscheint. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Das Ergebnis ist identisch mit den Funktionen MODE und MODE. SNGL in Excel, die nur den Minimalwert zurückgeben, wenn es mehrere Modi in der Menge der betrachteten Werte gibt. Die Excel-Funktion MODE. MULT würde alle Modi zurückgeben, aber man kann sie nicht als Maß im DAX implementieren. Abbildung 2 vergleicht das von Excel zurückgegebene Ergebnis mit der entsprechenden DAX-Formel für die Modusberechnung. Abbildung 2 Beispiel der Modusberechnung in Excel und DAX. Percentile Das Perzentil ist der Wert, unter dem ein bestimmter Prozentsatz der Werte in einer Gruppe fällt. Die Formel ignoriert leere Werte, die nicht als Teil der Bevölkerung betrachtet werden. Die Berechnung im DAX erfordert mehrere Schritte, die im Abschnitt "Vollständige Muster" beschrieben sind, in dem gezeigt wird, wie die gleichen Ergebnisse der Excel-Funktionen PERCENTILE, PERCENTILE. INC und PERCENTILE. EXC erhalten werden. Die Quartile sind drei Punkte, die einen Satz von Werten in vier gleiche Gruppen aufteilen, wobei jede Gruppe ein Viertel der Daten umfasst. Sie können die Quartile mit dem Percentile-Muster nach diesen Korrespondenzen berechnen: Erster Quartil-Unterquartil 25. Perzentil Zweiter Quartil-Median 50. Perzentil Dritter Quartil-Oberquartil 75. Perzentil Komplettes Muster Ein paar statistische Berechnungen haben eine längere Beschreibung des vollständigen Musters, weil Vielleicht haben Sie je nach Datenmodell und anderen Anforderungen unterschiedliche Implementierungen. Moving Average Normalerweise beurteilen Sie den gleitenden Durchschnitt, indem Sie auf den Tag Granularitätsniveau verweisen. Die allgemeine Vorlage der folgenden Formel hat diese Markierungen: ltnumberofdaysgt ist die Anzahl der Tage für den gleitenden Durchschnitt. Ltdatecolumngt ist die Datumssäule der Datumstabelle, wenn Sie eine oder die Datumssäule der Tabelle enthalten, die Werte enthält, wenn es keine separate Datumstabelle gibt. Ltmeasuregt ist die Maßnahme, um den gleitenden Durchschnitt zu berechnen. Das einfachste Muster nutzt die AVERAGEX-Funktion im DAX, die automatisch nur die Tage berücksichtigt, für die es einen Wert gibt. Alternativ können Sie die folgende Vorlage in Datenmodellen ohne Datumstabelle und mit einer Maßnahme, die aggregiert werden kann (zB SUM), über den gesamten betrachteten Zeitraum verwenden. Die vorherige Formel betrachtet einen Tag ohne entsprechende Daten als Maß, der 0 Wert hat. Dies kann nur geschehen, wenn Sie eine separate Datumstabelle haben, die Tage enthalten kann, für die es keine entsprechenden Transaktionen gibt. Sie können den Nenner für den Durchschnitt nur mit der Anzahl der Tage festlegen, für die es Transaktionen gibt, die das folgende Muster verwenden, wobei: ltfacttablegt die Tabelle ist, die sich auf die Datumstabelle bezieht und die von der Maßnahme berechneten Werte enthält. Sie können die DATESBETWEEN - oder DATESINPERIOD-Funktionen anstelle von FILTER verwenden, aber diese funktionieren nur in einer regulären Datumstabelle, während Sie das oben beschriebene Muster auch auf nicht reguläre Datumstabellen und auf Modelle mit einer Datumstabelle anwenden können. Betrachten wir zum Beispiel die verschiedenen Ergebnisse, die durch die beiden folgenden Maßnahmen hervorgerufen werden. In Abbildung 3 können Sie sehen, dass es keine Verkäufe am 11. September 2005 gibt. Dieses Datum ist jedoch in der Date-Tabelle enthalten. Es gibt also 7 Tage (vom 11. September bis 17. September), die nur 6 Tage mit Daten haben. Abbildung 3 Beispiel für eine gleitende durchschnittliche Berechnung unter Berücksichtigung und ignorierte Daten ohne Umsatz. Die Maßnahme Moving Average 7 Tage hat eine niedrigere Zahl zwischen 11. September und 17. September, weil es den 11. September als Tag mit 0 Verkäufen berücksichtigt. Wenn du Tage ohne Verkauf ignorieren möchtest, dann benutze die Maßnahme Moving Average 7 Days No Zero. Dies könnte der richtige Ansatz sein, wenn Sie eine komplette Datumstabelle haben, aber Sie möchten Tage ohne Transaktionen ignorieren. Mit der Moving Average 7 Days Formel ist das Ergebnis korrekt, da AVERAGEX automatisch nur nicht leere Werte berücksichtigt. Denken Sie daran, dass Sie die Leistung eines gleitenden Durchschnitts verbessern könnten, indem Sie den Wert in einer berechneten Spalte einer Tabelle mit der gewünschten Granularität wie Datum oder Datum und Produkt beibehalten. Der dynamische Berechnungsansatz mit einer Maßnahme bietet jedoch die Möglichkeit, einen Parameter für die Anzahl der Tage des gleitenden Durchschnitts zu verwenden (z. B. ersetzen ltnumberofdaysgt mit einer Maßnahme, die das Parameter-Tabellenmuster implementiert). Der Median entspricht dem 50. Perzentil, das man mit dem Percentile-Muster berechnen kann. Das mediane Muster erlaubt es Ihnen jedoch, die Medianberechnung mit einer einzigen Maßnahme zu optimieren und zu vereinfachen, anstatt der verschiedenen Maßnahmen, die das Percentile-Muster benötigt. Sie können diesen Ansatz verwenden, wenn Sie den Median für Werte berechnen, die in ltvaluecolumngt enthalten sind, wie unten gezeigt: Um die Leistung zu verbessern, möchten Sie vielleicht den Wert einer Maßnahme in einer berechneten Spalte beibehalten, wenn Sie den Median für die Ergebnisse erhalten möchten Eine Maßnahme im Datenmodell. Bevor Sie diese Optimierung durchführen, sollten Sie die MedianX-Berechnung auf der Grundlage der folgenden Vorlage implementieren, indem Sie diese Markierungen verwenden: ltgranularitytablegt ist die Tabelle, die die Granularität der Berechnung definiert. Zum Beispiel könnte es die Date-Tabelle sein, wenn man den Median einer auf dem Tagesniveau berechneten Maßnahme berechnen möchte, oder es könnte VALUES (8216DateYearMonth) sein, wenn man den Median einer auf dem Monatsniveau berechneten Maßnahme berechnen möchte. Ltmeasuregt ist die Maßnahme, um für jede Zeile von ltrancityitytablegt für die Medianberechnung zu berechnen. Ltmeasuretablegt ist die Tabelle mit Daten, die von ltmeasuregt verwendet werden. Zum Beispiel, wenn das ltgranularitytablegt eine Dimension wie 8216Date8217 ist, dann wird das ltmeasuretablegt 8216Internet Sales8217 mit der Internet-Verkaufsmenge Spalte summiert durch die Internet Total Sales Maßnahme. Zum Beispiel können Sie den Median des Internet Total Sales für alle Kunden in Adventure Works wie folgt schreiben: Tipp Das folgende Muster: wird verwendet, um Zeilen aus ltgranularitytablegt zu entfernen, die keine entsprechenden Daten in der aktuellen Auswahl haben. Es ist ein schnellerer Weg als die Verwendung des folgenden Ausdrucks: Allerdings können Sie den gesamten CALCULATETABLE Ausdruck mit nur ltgranularitytablegt ersetzen, wenn Sie leere Werte des ltmeasuregt als 0 betrachten möchten. Die Leistung der MedianX Formel hängt von der Anzahl der Zeilen in der Tisch iteriert und auf die Komplexität der Maßnahme. Wenn die Leistung schlecht ist, können Sie das ltmeasuregt-Ergebnis in einer berechneten Spalte des lttablegt bestehen, aber dies wird die Fähigkeit entfernen, Filter auf die Medianberechnung zur Abfragezeit anzuwenden. Percentile Excel hat zwei verschiedene Implementierungen der Perzentilberechnung mit drei Funktionen: PERCENTILE, PERCENTILE. INC und PERCENTILE. EXC. Sie alle kehren das K-te Perzentil der Werte zurück, wobei K im Bereich 0 bis 1 liegt. Der Unterschied ist, dass PERCENTILE und PERCENTILE. INC K als Inklusivbereich betrachten, während PERCENTILE. EXC den K-Bereich 0 bis 1 als exklusiv betrachtet . Alle diese Funktionen und ihre DAX-Implementierungen erhalten einen Perzentilwert als Parameter, den wir K. ltKgt-Perzentilwert im Bereich 0 bis 1 nennen. Die beiden DAX-Implementierungen von Perzentil erfordern ein paar Maßnahmen, die ähnlich, aber unterschiedlich genug sind Zwei verschiedene Formeln. Die in jedem Muster definierten Maßnahmen sind: KPerc. Der Perzentilwert entspricht ltKgt. PercPos Die Position des Perzentils im sortierten Satz von Werten. ValueLow Der Wert unterhalb der Perzentilposition. ValueHigh. Der Wert über der Perzentilposition. Percentile Die endgültige Berechnung des Perzentils. Sie benötigen die ValueLow - und ValueHigh-Maßnahmen, falls der PercPos einen Dezimalteil enthält, denn dann müssen Sie zwischen ValueLow und ValueHigh interpolieren, um den korrekten Perzentilwert zurückzugeben. Abbildung 4 zeigt ein Beispiel für die Berechnungen, die mit Excel - und DAX-Formeln erstellt wurden, wobei beide Algorithmen von Perzentil (einschließlich und exklusiv) verwendet werden. Abbildung 4 Perzentile Berechnungen mit Excel-Formeln und der entsprechenden DAX-Berechnung. In den folgenden Abschnitten führen die Percentile-Formeln die Berechnung auf Werte aus, die in einer Tabellenspalte DataValue gespeichert sind, während die PercentileX-Formeln die Berechnung auf Werte ausführen, die von einer bei einer gegebenen Granularität berechneten Größe zurückgegeben werden. Percentile Inclusive Die Percentile Inclusive Implementierung ist die folgende. Percentile Exclusive Die Percentile Exclusive Implementierung ist die folgende. PercentileX Inclusive Die PercentileX Inclusive Implementierung basiert auf der folgenden Vorlage, wobei diese Marker verwendet werden: ltgranularitytablegt ist die Tabelle, die die Granularität der Berechnung definiert. Zum Beispiel könnte es die Datumstabelle sein, wenn Sie das Perzentil einer Maßnahme am Tagestag berechnen möchten, oder es könnte VALUES (8216DateYearMonth) sein, wenn Sie das Perzentil einer Maßnahme auf der Monatsstufe berechnen möchten. Ltmeasuregt ist die Maßnahme, um für jede Zeile von ltrancityitytablegt für die Perzentilberechnung zu berechnen. Ltmeasuretablegt ist die Tabelle mit Daten, die von ltmeasuregt verwendet werden. Wenn zum Beispiel die ltgranularitytablegt eine Dimension wie 8216Date, 8217 ist, dann wird das ltmeasuretablegt 8216Sales8217 sein, das die Summenspalte enthält, die durch das Gesamtmengenmaß summiert wird. Beispielsweise können Sie den PercentileXInc des Gesamtbetrags der Verkäufe für alle Termine in der Datentabelle wie folgt schreiben: PercentileX Exclusive Die PercentileX Exclusive Implementierung basiert auf der folgenden Vorlage und verwendet dieselben Marker, die in PercentileX Inclusive verwendet werden Kann die PercentileXExc des Gesamtbetrags der Verkäufe für alle Termine in der Datumstabelle wie folgt schreiben: Halten Sie mich über die bevorstehenden Muster (Newsletter) informiert. Deaktivieren Sie, um die Datei frei herunterzuladen. Veröffentlicht am 17. März 2014 byMoving Averages: Was sind sie unter den beliebtesten technischen Indikatoren, gleitende Durchschnitte werden verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (üblicherweise in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Einmal bestimmt, wird der daraus resultierende Durchschnitt dann auf ein Diagramm aufgetragen, um es den Händlern zu ermöglichen, geglättete Daten zu betrachten, anstatt sich auf die alltäglichen Preisschwankungen zu konzentrieren, die allen Finanzmärkten innewohnen. Die einfachste Form eines gleitenden Durchschnitts, die in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem man das arithmetische Mittel eines gegebenen Satzes von Werten annimmt. Zum Beispiel, um einen grundlegenden 10-Tage gleitenden Durchschnitt zu berechnen, würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl der Tage (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Händler einen 50-tägigen Durchschnitt anstatt sehen möchte, würde die gleiche Art von Berechnung gemacht werden, aber es würde die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu vermitteln, wie ein Vermögenswert in Bezug auf die letzten 10 Tage festgesetzt wird. Vielleicht fragen Sie sich, warum technische Händler dieses Werkzeug einen gleitenden Durchschnitt nennen und nicht nur ein normales Mittel. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Set gelöscht werden müssen und neue Datenpunkte kommen müssen, um sie zu ersetzen. Damit wird der Datensatz ständig auf neue Daten übertragen, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. In Abbildung 2, sobald der neue Wert von 5 dem Satz hinzugefügt wird, bewegt sich der rote Kasten (der die letzten 10 Datenpunkte repräsentiert) nach rechts und der letzte Wert von 15 wird aus der Berechnung gelöscht. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt der Datensatzabnahme, was es tut, in diesem Fall von 11 bis 10 zu sehen. Was verschieben die Durchschnitte aussehen Einmal die Werte der MA wurden berechnet, sie werden auf ein Diagramm geplottet und dann verbunden, um eine gleitende durchschnittliche Linie zu erzeugen. Diese geschwungenen Linien sind auf den Charts der technischen Händler üblich, aber wie sie verwendet werden, kann drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu jedem Diagramm hinzuzufügen, indem Sie die Anzahl der in der Berechnung verwendeten Zeiträume anpassen. Diese geschwungenen Linien mögen anfangs ablenkend oder verwirrend erscheinen, aber sie werden sich daran gewöhnt, wie es die Zeit verläuft. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, führen Sie gut eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von dem zuvor erwähnten einfachen gleitenden Durchschnitt unterscheidet. Der einfache gleitende Durchschnitt ist bei den Händlern sehr beliebt, aber wie alle technischen Indikatoren hat er seine Kritiker. Viele Einzelpersonen argumentieren, dass die Nützlichkeit des SMA begrenzt ist, weil jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die jüngsten Daten signifikanter sind als die älteren Daten und einen größeren Einfluss auf das Endergebnis haben sollten. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seither zur Erfindung von verschiedenen Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Lesungen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller bewegter Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art gleitender Durchschnitt, der den jüngsten Preisen mehr Gewicht verleiht, um es besser zu machen Zu neuen Informationen. Lernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Charting-Pakete die Berechnungen für Sie machen. Jedoch für Sie Mathe-Aussenseiter da draußen, hier ist die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als vorherige EMA verwendet werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort weiter fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die reale Beispiele enthält, wie man sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnet. Der Unterschied zwischen EMA und SMA Nun, da Sie ein besseres Verständnis davon haben, wie die SMA und die EMA berechnet werden, können Sie sich einen Blick darauf werfen, wie sich diese Durchschnittswerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gesetzt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 ist die Anzahl der in jedem Durchschnitt verwendeten Zeiträume identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu nutzen. Was sind die verschiedenen Tage Mittleren Durchlauf-Durchschnitten sind ein völlig anpassbarer Indikator, was bedeutet, dass der Benutzer frei wählen kann, was Zeitrahmen sie beim Erstellen des Durchschnitts wollen. Die häufigsten Zeiträume, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne ist, um den Durchschnitt zu schaffen, desto empfindlicher wird es Preisänderungen. Je länger die Zeitspanne, desto weniger empfindlich oder mehr geglättet wird, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen, um bei der Einrichtung Ihrer gleitenden Durchschnitte zu verwenden. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist, mit einer Reihe von verschiedenen Zeiträumen zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Umzugsdurchschnitte: Wie man sie benutzt

No comments:

Post a Comment